Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 6, 2026
-
Dense subgraph discovery (DSD) is a key primitive in graph mining that typically deals with extracting cliques and near-cliques. In this paper, we revisit the optimal quasi-clique (OQC) formulation for DSD and establish that it is NP--hard. In addition, we reveal the hitherto unknown property that OQC can be used to explore the entire spectrum of densest subgraphs of all distinct sizes by appropriately varying a single hyperparameter, thereby forging an intimate link with the classic densest-k-subgraph problem (DkS). We corroborate these findings on real-world graphs by applying the simple greedy algorithm for OQC with improved hyperparameter tuning, to quickly generate high-quality approximations of the size-density frontier. Our findings indicate that OQC not only extracts high quality (near)-cliques, but also large and loosely-connected subgraphs that exhibit well defined local community structure. The latter discovery is particularly intriguing, since OQC is not explicitly geared towards community detection.more » « less
-
We introduce the triangle-densest-K-subgraph problem (TDKS) for undirected graphs: given a size parameter K, compute a subset of K vertices that maximizes the number of induced triangles. The problem corresponds to the simplest generalization of the edge based densest-K-subgraph problem (DKS) to the case of higher-order network motifs. We prove that TDKS is NP-hard and is not amenable to efficient approximation, in the worst-case. By judiciously exploiting the structure of the problem, we propose a relaxation algorithm for the purpose of obtaining high-quality, sub-optimal solutions. Our approach utilizes the fact that the cost function of TDKS is submodular to construct a convex relaxation for the problem based on the Lovász extension for submodular functions. We demonstrate that our approaches attain state-of-the-art performance on real-world graphs and can offer substantially improved exploration of the optimal density-size curve compared to sophisticated approximation baselines for DKS. We use document summarization to showcase why TDKS is a useful generalization of DKS.more » « less
An official website of the United States government
